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Anharmonic state counts and partition functions for molecules
via classical phase space integrals in curvilinear coordinates
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An algorithm is presented for calculating fully anharmonic vibrational state counts, state densities,
and partition functions for molecules using Monte Carlo integration of classical phase space. The
algorithm includes numerical evaluations of the elements of the Jacobian and is general enough to
allow for sampling in arbitrary curvilinear or rectilinear coordinate systems. Invariance to the choice
of coordinate system is demonstrated for vibrational state densities of methane, where we find com-
parable sampling efficiency when using curvilinear z-matrix and rectilinear Cartesian normal mode
coordinates. In agreement with past work, we find that anharmonicity increases the vibrational state
density of methane by a factor of ∼2 at its dissociation threshold. For the vinyl radical, we find
a significant (∼10×) improvement in sampling efficiency when using curvilinear z-matrix coordi-
nates relative to Cartesian normal mode coordinates. We attribute this improved efficiency, in part,
to a more natural curvilinear coordinate description of the double well associated with the H2C–
C–H wagging motion. The anharmonicity correction for the vinyl radical state density is ∼1.4 at
its dissociation threshold. Finally, we demonstrate that with trivial parallelizations of the Monte
Carlo step, tractable calculations can be made for the vinyl radical using direct ab initio potential
energy surface evaluations and a composite QCISD(T)/MP2 method. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4804420]

I. INTRODUCTION

Accurate bimolecular or unimolecular transition state
theory (TST) calculations require accurate partition func-
tions and state counts for the reactant and the transition state
species. However, the quantum mechanical harmonic oscilla-
tor (HO) approximation is often used in practical applications
of TST as it greatly simplifies the evaluation of the partition
functions and state counts. This approximation has two parts.
First, each vibrational mode is assumed to be uncoupled from
the other vibrational modes and from rotations, and, second,
each vibration is assumed to take place on a quadratic po-
tential energy surface. Despite the apparent severity of these
assumptions, the HO approximation has been widely applied
and found to be of enormous practical utility in both kinetics
and thermochemistry. In fact, only fairly recently has the un-
certainty in calculated values of the reaction barrier, V ‡, for
molecular systems been reduced enough to compete with the
uncertainty arising from the HO approximation. With values
of V ‡ now routinely calculated with “chemical accuracy,”1 the
HO approximation can be the dominant source of uncertainty
in calculations of the rate constant, particularly at elevated
temperatures where tunneling is not expected to be important
and where the exponential mitigates the uncertainty associ-
ated with V ‡.2

Numerous methods have been proposed for calculating
anharmonic state counts and partition functions. Torsions are
often treated as a special kind of vibration and may be ap-
proximated as separable (uncoupled) from the other vibra-
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tions and as a collection of independent one-dimensional hin-
dered rotors.3–5 Similar methods may be applied for other
kinds of one-dimensional anharmonicities (e.g., Morse oscil-
lators, squarer-than-quadratic bends, etc.). When anharmonic
coupling is neglected, the total partition function is the prod-
uct of the one-dimensional ones, and the total number of
states is readily calculated via direct quantum mechanical
state counts6, 7 or classical convolutions.4 Pitzer and Gwinn8

proposed an ambitious treatment of coupled torsions 70 years
ago, but this method has not found widespread use. A recently
developed method for treating torsions that include some an-
harmonic coupling is the multi-structural approximation of
Truhlar and co-workers,9 which is applicable to molecular
systems and includes the effect of the change in local mode
frequencies due to torsional conformer changes. We refer the
reader to the introduction of Ref. 9 for a recent summary of
other methods that have been proposed for treating torsions.
Although these specialized methods for torsions may be prac-
tically useful, they typically involve the separable approxima-
tion for the torsions mentioned above and ad hoc models to
approximate some of the missing anharmonic couplings. It
is difficult to appraise their predictive accuracy as there have
been few comparisons of these treatments with higher-level
methods10, 11 and none for systems larger than a few atoms.

Direct quantum mechanical state counts based on ei-
ther the exact or approximate solution of the rovibrational
Hamiltonian12–15 may be performed. However, these methods
are limited to small systems and, even when such calculations
are possible, it is difficult to obtain spectra up to high enough
energies to converge the calculated kinetics and/or thermo-
chemistry at moderate and high temperatures.

0021-9606/2013/138(19)/194109/8/$30.00 © 2013 AIP Publishing LLC138, 194109-1
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Nguyen and Barker implemented and validated a practi-
cal approach for calculating anharmonic state counts and par-
tition functions, including anharmonic coupling, for molec-
ular systems.16, 17 Their method is based on a spectroscopic
expansion of the potential energy surface, requires readily
computed local information near the potential energy surface
minimum, and was shown to be very accurate when compared
with accurate quantum mechanical state counts for small sys-
tems. This method may be systematically more accurate than
the HO approximation for local vibrations but is similarly not
applicable to nonlocal motions such as torsions. Furthermore,
the spectroscopic expansion has known deficiencies relating
to “turnover” where the energy artificially decreases with in-
creasing vibrational quantum number at high energy due to
the truncated expansion.

Troe and Ushakov have described a series of detailed
semiempirical corrections to the HO approximation,18 and
these were extended and evaluated by Schmatz for large
systems.19 These corrections may be readily applied, even to
very large systems, but their predictive accuracy is unknown.

Finally, we consider the evaluation of state counts and
partition functions via classical Monte Carlo phase space
integration.20–23 Phase space integration has the significant
advantages that it is generally applicable, it does not require
an expansion about a preferred potential energy minimum and
so can naturally treat nonlocal vibrations, and it is (classi-
cally) exact, including both single-mode anharmonicity and
anharmonic coupling. This approach may be readily applied
to calculate transition state properties, although such applica-
tions remain rare and have been limited to small systems.24–26

The resulting classical partition functions can be quantum-
corrected via Pitzer and Gwinn’s “useful approximation,”8

Qq ≈ Qc

QHO
q

QHO
c

, (1)

or Doll’s analog for the state count, W ,24 where the super-
script “HO” denotes the harmonic approximation and the sub-
scripts “q” and “c” denote quantum mechanical and classical
partition functions, respectively. Alternatively, classical state
counts may be corrected via semiclassical rules, such as the
Whitten-Rabinovich approximation27 or obtained via the in-
verse Laplace transform.28 Finally, we note that exact quan-
tum mechanical partition functions can be obtained when this
approach is coupled with path integral methods.29–31 Classi-
cal Monte Carlo phase space integration is particularly well-
suited for high-temperature/high-energy applications, where
the number of states is large and quantum effects are not as
important.

Here we implement Monte Carlo phase space integration
in arbitrary curvilinear or rectilinear coordinates with numer-
ical evaluations of the volume element. Whereas previous im-
plementations have used Cartesian normal mode coordinates
or specialized coordinates for small systems, the present ap-
proach allows for more straightforward application to larger
systems and to systems with nonlocal motions. Recently, the
realization that optimized coordinate systems can result in re-
duced potential energy and kinematic couplings, particularly
for large displacements, has lead to their use in vibrational

calculations.32–34 Thus, we expect that, the use of curvilin-
ear coordinates can result in more efficient sampling for some
systems and allow for more natural reduced-dimensional cal-
culations.

Theoretical details of our implementation are given in
Sec. II. In Sec. III, calculated values of the density of states, ρ,
and the partition function, Q, for methane are used to demon-
strate the method’s invariance with respect to the choice of
coordinate system. An application to a system with nonlo-
cal motions is also made. State densities for the vinyl radi-
cal, which features a nonlocal double well for the H2C–C–H
wagging motion, are calculated to demonstrate the improved
efficiency of using z-matrix coordinates for this system. This
system is also used to demonstrate that efficient Monte Carlo
phase space integration calculations can be performed, even
with direct evaluations of an accurate ab initio potential
energy surface.

II. THEORY

Classically, the number of vibrational states in an α-
dimensional system with energy less than or equal to E,
W (E), and subject to the constraint of zero total angular mo-
mentum (J = 0) is given by the integral over phase space,

W (E) = h−α

∫
u[E − H (x, p)] dx dp, (2)

where x are the Cartesian coordinates, p the conjugate mo-
menta, and u is the Heaviside step function making the inte-
gral only non-zero over the space such that the Hamiltonian
H(x, p) has energy less than or equal to E. Similarly, the rovi-
brational density of states is given by

W (E)=h−(α+3)
∫

u[E−H (x, p, j)] dx sin θ dθ dψ dφ dp dj,

(3)
where θ , ψ , and φ are the three Euler angles (which are
omitted from the Hamiltonian, since neither the potential en-
ergy nor the kinetic energy depends on them), and j are the
three components of the angular momentum. Despite their
relatively simple forms, direct evaluation of these integrals is
complicated by three problems: (i) it is a high-dimensional in-
tegral (either 6N − 12 for the purely vibrational space or 6N −
6 for the rovibrational space, where N is the number of atoms),
(ii) the sampling domain should contain the entire set of co-
ordinates for which H ≤ E, but this domain is not generally
known, and (iii) the Hamiltonian operator must be efficiently
evaluated. The high-dimensionality of the problem effectively
rules out direct numerical integration via standard grid-based
quadrature rules while the complexity of the underlying po-
tential energy surface appearing in the Hamiltonian also ef-
fectively prohibits analytic evaluation. Monte Carlo integra-
tion is possible provided that the challenges associated with
(ii) and (iii) can be overcome.

We first turn our attention to the former problem of spec-
ifying an appropriate sampling domain. The domain where
the integrand is nonzero corresponds to the condition, H ≤ E,
but the shape of this domain is not known. We instead de-
fine a sampling domain that is more convenient to spec-
ify and that includes the H ≤ E region. Momenta are not
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sampled, and this part of the integral is handled analytically,
as discussed below. Coordinates are sampled in a hyperrectan-
gle with edges defined by minimum and maximum values of
the chosen coordinates. While any set of coordinates can al-
low all possible configurations with H ≤ E to be sampled, the
choice of coordinates greatly affects the efficiency of evaluat-
ing the integral in Eq. (2) by Monte Carlo integration. Indeed,
poor choices of coordinates can result in sampling domains
with negligible fractions corresponding to H ≤ E, particu-
larly for large molecules, where an optimum or near-optimum
set of coordinates is required. For better choices of the co-
ordinates, the sampling domain more closely approximates
geometries where H ≤ E and thus there are fewer wasted
samplings. Other authors have employed different schemes
for specifying non-rectangular coordinate bounds17 or used
Jacobi coordinates for three-atom systems.20 In this work we
will consider two natural choices for the coordinate system,
namely, displacements along mass-weighted Cartesian nor-
mal modes and chemist’s or z-matrix (bond length, bond an-
gle, dihedral coordinates). The algorithm we present, how-
ever, is constructed in such a way that it can be applied to any
choice of rectilinear or curvilinear coordinate system.

The integral in Eqs. (2) and (3) can be simplified by start-
ing from the expression for the Hamiltonian in Cartesian co-
ordinates,

H (x, p, j) =
α∑

i=1

1

2mi

p2
i +

3∑
i=1

1

2Ii

j 2
i + V (x), (4)

where Ii is the moment of inertia associated with the three
rotational degrees of freedom. Coupling terms between ro-
tational and vibrational coordinates are omitted because we
assume the separation between these degrees of freedom is
carried at a geometry given by x, for which it is exact. In
mass-weighted Cartesian normal coordinates, all of the re-
duced masses associated with the vibrational degrees of free-
dom are in unity, and then the integral over the momenta
can be carried out analytically, yielding the expression for the
J = 0 case of

W (E) = h−α

∫
u[E − H (x, p)]Sα(p(x))dx, (5)

or, for the rovibrational case,

W (E) = 8π2h−(α+3)
∫

u[E − H (x, p, j)]

×
√

I1(x)I2(x)I3(x)Sα+3(p(x))dx, (6)

where Sα is the volume of an (α)-dimensional hypersphere
with radius p(x) = √

2(E − V (x)). Hereafter, we will primar-
ily consider the J = 0 case, but all equations have analogous
nonzero J versions.

While the Cartesian normal modes were useful for carry-
ing out the integration over the momenta, we would like to be
able to sample the configuration space of the molecule using
an arbitrary set of coordinates, q. The transformation of co-
ordinates between the mass-weighted Cartesians, x, and the

arbitrary set, q, introduces the determinant of the Jacobian,

J =

⎡
⎢⎣

∂x1
∂q1

· · · ∂x1
∂qα

...
. . .

...
∂x3N

∂q1
· · · ∂x3N

∂qα

⎤
⎥⎦, (7)

as an additional factor in the integral. After this transforma-
tion, we have, as our final working equation for the integra-
tion,

W (E) = h−α

∫
u[E − H (q, p)]|J (q)|Sα(p(q))dq, (8)

or a similar expression for the rovibrational case.
Rather than attempt to derive analytic Jacobians for arbi-

trary choices of q, we adopt the following numerical proce-
dure. To begin, we define transformations that convert from
our choice of arbitrary coordinates, q, to body-fixed mass-
weighted Cartesian coordinates, x, having their origin at the
center-of-mass. The partial derivatives are calculated numeri-
cally as

∂xi

∂qj

= xi(q1, . . . , qj − h, . . . , qα)−xi(q1, . . . , qj +h, . . . , qα)

2h
.

(9)

From this procedure we construct the 3N × 3N − 6 (3N × 3N
− 3 for nonzero J) deformation matrix,

D =

⎡
⎢⎣

∂x1
∂q1

· · · ∂x1
∂q3N−6

...
. . .

...
∂x3N

∂q1
· · · ∂x3N

∂q3N−6

⎤
⎥⎦, (10)

from which we can evaluate the determinant of the Jacobian
as |J (q)| =

√
|DT D|. This scheme is similar to one that has

been employed in vibrational structure and quantum dynam-
ics to numerically construct Wilson’s G matrix and evaluate
the kinetic energy operator.35, 36

In Monte Carlo integration, random configurations are
chosen within a uniformly sampled domain and the integral
is evaluated as

∫
	

f (y)dy ≈ 	

M

M∑
i=1

f (y), (11)

where 	 denotes the total volume of the sampled region and
y is a uniformly sampled variate. In our case, the integral for
W becomes

W (E) = 	(
q)

Mhα

M∑
i=1

F (qi), (12)

where F(qi) is equal to the integrand of Eq. (8) evaluated at qi
and M is the number of samples. The domain of integration is
given by the hyperrectangle {
q|a1 ≤ q1 ≤ b1, . . . , aα ≤ qα

≤ bα}, which yields the final expression,

	(
q) =
∏α

i=1(bi − ai)

M

M∑
i=1

|J (qi)|. (13)
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The boundaries of the hyperrectangle could be chosen in a va-
riety of ways and will affect the overall performance of the al-
gorithm. The details of the strategy for choosing these bounds
will be discussed later. In our implementation, W is calculated
simultaneously over a range of energies. The contribution of
each sampled geometry to W (E) from E = 0 up to Emax is
evaluated, where Emax is a parameter. The density of states,
ρ(E), is evaluated from W (E) by numerical differentiation,

ρ(E) = W (E + ε) − W (E − ε)

2ε
, (14)

with ε = 1 cm−1. While one could also evaluate ρ(E) directly,
by replacing the Heaviside step function with a corresponding
δ-function in Eq. (8), we have found the numerical differenti-
ation to be quite stable and to yield good results.

Above the energy for dissociation, the integral given in
Eq. (8) can become unbounded since it becomes possible
to extend infinitely along certain coordinates. This does not
present a practical difficulty however, since we will place
boundaries on the configuration space in order to limit the
integral to the regions of interest. Other methods for calcu-
lating ρ(E) and W (E) encounter similar difficulties and must
resort to similar truncations in order to confine the space. For
instance, state counts based on spectroscopic expansions trun-
cate the order of the potential to keep the space bounded,
while direct counts based on solving the rovibrational Hamil-
tonian effectively limit the space according to the extent of
the basis employed. Furthermore, we expect state counts and
densities evaluated above the threshold energy with such trun-
cations in place to nonetheless be accurate for many applica-
tions, at least for some range of energies close to threshold.
At these energies, the number of quasibound states that are
correctly included in the truncated state count is likely much
greater than the number of continuum states that are being
partially miscounted.

In the subsequent numerical tests, we define the anhar-
monicity corrections factors as, e.g.,

f (E) = ρA(E)

ρH (E)
, (15)

where ρA(E) is the anharmonic density of states and ρH(E) is
the harmonic density of states. Comparison of the numerical
results with the harmonic oscillator results is useful, both be-
cause it allows us to define a correction factor to the density
of states and hence to the partition function and rate coeffi-
cient calculations as well as to estimate the uncertainty of the
Monte Carlo procedure, since exact expressions for ρH(E) are
known. Furthermore, these corrections are of direct relevance
to many conventional kinetics calculations, where the HO ap-
proximation is often employed.

III. RESULTS AND DISCUSSION

A. Methane

The main purpose of the tests involving CH4 is to test the
exactness of the numerical procedure for constructing the Ja-
cobian as well as to check the convergence behavior of our al-
gorithm. CH4 is a good benchmark molecule because we can
expect that both z-matrix and Cartesian normal modes will

1
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FIG. 1. Comparison of the anharmonicity correction to ρ for CH4 computed
using Cartesian normal-mode and z-matrix coordinates.

equally be the good representations of the important molecu-
lar configurations, and so we should be able to converge the
results in either coordinate system with similar efficiencies.
This is because methane has no low frequency normal modes
and its vibrations can be well described by local motions. Ad-
ditionally, we can make use of a very fast CH4 potential based
on the tight-binding model37, 38 so that we can easily achieve
millions of sampled geometries and test the rate of conver-
gence of the Monte Carlo integration.

Figure 1 shows a comparison between the density of
states generated for CH4 using Cartesian normal mode sam-
pling and z-matrix coordinates. In both cases the hyperrectan-
gle was defined by single turning points on the real potential
for E = 30 000 cm−1. This hyperrectangle was then divided
up into a series of nested hyperrectangles and each one was
sampled independently. Such a procedure can be used to ef-
fectively bias the sampling towards the lower-energy regions
and reduce the statistical error in those regions, which helps
to reduce the statistical error in the thermodynamic properties.
As can be seen from Figure 1, the two methods generate iden-
tical state densities (plotted here as the anharmonicity correc-
tion factor for the state density). At the bond dissociation en-
ergy, the anharmonicity correction factor to W is 1.98 which
agrees with the values obtained by Nguyen and Barker17 and
Schmatz.19

A set of 20 trials for different sample sizes between
M = 10 000 and 1 000 000 was used to quantify the rate of
convergence for both Cartesian normal mode and z-matrix co-
ordinates, shown in Fig. 2. The standard deviation and mean
of the results of these 20 trials are used to illustrate the conver-
gence of the method. We define the relative standard deviation
as the standard deviation divided by the mean, σ

W̄
, and the rel-

ative maximum error as max(|Wi−W̄ |)
W̄

. The resulting values were
fit to the form a · Mb, where a and b are fitting parameters.
Both convergence metrics for Cartesian normal mode and
z-matrix coordinates are shown in Fig. 2, where Cartesian nor-
mal mode coordinates slightly outperform the z-matrix coor-
dinates. The sampling error for both decreases as the square
root of the number of samples, which is the expected result
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metrics evaluated for one of the three energies using the specified coordinate
system and for some value of M. The solid curves are the best fits of the data
points to the form a · Mb.

for Monte Carlo algorithms. Both the z-matrix and Cartesian
coordinate achieve sampling uncertainties of less than 2% at
fewer than 100 000 samples.

In order to further assess the accuracy of the com-
puted anharmonicity correction factor, we have compared the
partition function obtained via Eq. (1) with the J = 0 par-
tition function obtained from direct calculation of the vibra-
tional energy levels using vibrational configuration interac-
tion (VCI). These results are shown in Table I. There is in
good agreement between the Pitzer–Gwinn8 correction par-
tition function and the VCI results, particularly at high tem-
peratures when the correction is non-negligible. Our results
for Qvib,J=0,VCI are also in reasonable agreement with previ-
ous calculations for this quantity.39

We also have used CH4 as a demonstration of the rovibra-
tional sampling algorithm to illustrate the effect of coupling
between rotational and vibrational degrees of freedom. The
same set of sampling parameters as the above J = 0 run in
z-matrix coordinates was used, and the resulting density of
states was used to evaluate the partition function at selected
temperatures. These results are shown in Table II. For com-

TABLE I. Comparison of vibrational partition functions obtained using
the harmonic approximation, the Pitzer-Gwinn8 corrected harmonic partition
function, and VCI. Results above 1500 K are not shown for VCI because it
became difficult to converge sufficient vibrational states at high enough ener-
gies to converge Q.

Temperature (K) Qharmonic Qcorrected QVCI

100 1.000 1.002 1.000
200 1.000 1.020 1.000
300 1.002 1.033 1.004
400 1.015 1.058 1.022
500 1.050 1.107 1.067
600 1.112 1.187 1.147
700 1.208 1.304 1.266
800 1.340 1.464 1.430
900 1.514 1.675 1.647
1000 1.737 1.944 1.926
1250 2.567 2.964 2.976
1500 3.957 4.711 4.748
1750 6.217 7.635
2000 9.820 12.43
3000 56.79 81.26

parison, the rotational partition function corresponding to a
classical rigid rotor having moments of inertia corresponding
to those for the equilibrium structure of CH4 has been used as
a reference for the separable case. Classically, the rotational
partition function is proportional to the moments of inertia
along each axis. Thus, we may expect that as the temperature
increases and structures with longer C–H bonds are sampled
the rotational contribution to the overall rovibrational parti-
tion function will grow, and this is indeed the case seen in
Table II. In the case of CH4 the coupling between rotation and
vibration serves to further increase the anharmonicity correc-
tion relative to the harmonic oscillator-rigid rotor approxima-
tion. The coupling of vibrations to rotations is often assumed
to be negligible, and these results mostly confirm that, ex-
cept at high temperatures where there starts to be appreciable
deviation.

Finally, we note that anharmonicity corrections of the ra-
tio, ρ(E)/Q(T), are of direct relevance to low-pressure uni-
molecular dissociation reactions.40, 41 The corrections cal-
culated for this ratio for CH4 vary from 2.0 to 1.5 for
T = 300–2000 K and E equal to the dissociation threshold. As
discussed elsewhere,42 the magnitude of this correction sug-
gests that the neglect of vibrational anharmonicity can domi-
nate the overall error in low-pressure unimolecular dissocia-
tion calculations.

B. Vinyl radical

The tests involving the vinyl radical are designed
to demonstrate direct ab initio sampling using this al-
gorithm as well as to illustrate some important ef-
fects of employing curvilinear coordinates. Calculations in
this section are performed either using direct sampling
of a hybrid QCISD(T)/MP2 potential, where the energy
is defined as E = E(MP2/cc-pVTZ) − E(MP2/cc-pVDZ)
+ E(RQCISD(T)/cc-pVDZ), or using a fitted potential
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TABLE II. Comparison of partition functions calculated with and without the inclusion of coupling between vibrations and rotations. All partition functions
are calculated classically and numbers in square brackets correspond to powers of ten. The columns, respectively, are: the purely vibrational harmonic oscillator
partition function, Qvib,har; the purely vibrational anharmonic sampled partition function, Qvib,anh; the rovibrational partition function using the harmonic
vibrations and the rigid rotor approximation, Qrovib,anh–rr; the rovibrational partition function using the anharmonic sampled vibrations and the rigid rotor
approximation, Qrovib,anh–rr; and the rovibrational partition function computed fully using the sampling algorithm, Qrovib,anh. The anharmonicity corrections are
defined as fvib = Qvib,anh/Qvib,har, frot = Qrovib,anh/Qrovib,anh–rr, and frovib = Qrovib,anh/Qrovib,har–rr.

Temperature (K) Qvib,har Qvib,anh Qrovib,har–rr Qrovib,anh–rr Qrovib,anh fvib frot frovib

100 6.89[−9] 6.89[−9] 5.90[−7] 5.90[−7] 5.88[−7] 1.00 1.00 1.00
200 3.53[−6] 3.52[−6] 8.55[−4] 8.53[−4] 8.75[−4] 1.00 1.02 1.02
300 1.36[−4] 1.38[−4] 6.03[−2] 6.14[−2] 6.29[−2] 1.02 1.03 1.04
400 1.81[−3] 1.87[−3] 1.24[0] 1.28[0] 1.31[0] 1.04 1.02 1.06
500 1.35[−2] 1.42[−2] 1.29[1] 1.36[1] 1.39[1] 1.06 1.02 1.08
600 6.95[−2] 7.44[−2] 8.74[1] 9.36[1] 9.57[1] 1.07 1.02 1.10
700 2.78[−1] 3.02[−1] 4.41[2] 4.79[2] 4.90[2] 1.09 1.03 1.11
800 9.25[−1] 1.02[0] 1.79[3] 1.97[3] 2.03[3] 1.10 1.03 1.13
900 2.67[0] 2.97[0] 6.17[3] 6.86[3] 7.09[3] 1.11 1.03 1.15
1000 6.89[0] 7.75[0] 1.87[4] 2.10[4] 2.18[4] 1.12 1.04 1.17
1250 5.14[1] 5.94[1] 1.94[5] 2.25[5] 2.36[5] 1.16 1.05 1.21
1500 2.65[2] 3.16[2] 1.32[6] 1.57[6] 1.66[6] 1.19 1.06 1.26
1750 1.06[3] 1.30[3] 6.65[6] 8.16[6] 8.73[6] 1.23 1.07 1.31
2000 3.53[3] 4.46[3] 2.70[7] 3.42[7] 3.69[7] 1.27 1.08 1.37
3000 1.36[5] 1.93[5] 1.91[9] 2.72[9] 3.04[9] 1.43 1.12 1.59

energy surface based on CCSD(T)/aug-cc-pVTZ data.43 The
direct electronic structure calculations were performed us-
ing the MOLPRO44 suite of quantum chemistry programs. The
sampling procedure used in these calculations is similar to
that used for CH4 and involves a set of nested hyperrectan-
gles, which are sampled independently and then weighted by
their volumes. The edges of the hyperrectangles were defined
by the one coordinate turning points with E = 13 000 cm−1.

The minimum energy structure of the vinyl radical,
H2CCH′, is a bent Y where the CCH′ angle, θ , is 137◦. This
causes the potential energy surface to possess two mirror im-
age minima both of which can be accessed via the CCH′ bend-
ing motion. Restricting our attention first to this angle we ap-
ply our algorithm to sample only along this bend, using ei-
ther the angular coordinate, θ , or the corresponding Cartesian
normal mode representation. The calculated state densities
are shown in Fig. 3(a) for the QCSID(T)/MP2 potential with
M = 12 800 sampling points. The potentials obtained along
the respective coordinates are also shown in Fig. 3(b).

The angular coordinate, θ , is a better one-dimensional de-
scription of the motion as can be seen from the comparison
of the potential energy curves. Accessing the saddle point at
θ = 180◦ is not possible in this one-coordinate picture using
Cartesian normal modes and would require simultaneous dis-
placements along several normal coordinates, indicating cou-
pling among those coordinates in the fairly low energy regions
of the saddle point. The potential curves along neither coor-
dinate are particularly harmonic. The curve along the normal
coordinate has a significant quartic component, as evidenced
by the drop in the density of states relative to the analytic
harmonic solution. Although the angular sampling appears to
track the analytic harmonic solution until it reaches the en-
ergy of the barrier at θ = 180◦, this is a rather fortuitous can-
cellation of both positive and negative anharmonicities. The
region with angles larger than 140◦ yields a higher density
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FIG. 3. (a) One-dimensional state density for the H2C–C–H vibration for
two choices of the bending coordinate and the harmonic approximation
to it. The energy of the barrier between the two equivalent minima is
shown as the pink vertical line. (b) The potential energy curves along two
coordinates.
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FIG. 4. (a) Relative standard deviation and (b) relative maximum error for W

at two energies, 5000 cm−1 and 10 000 cm−1, using both coordinate systems.
The solid curves are the best fits of the data points to the form a · M−0.5.

of states than the harmonic potential, while the region with
angles smaller than 130◦ yields a lower density.

In addition to reducing coupling, the use of the angular
coordinate can also conveniently enforce the separation of the
two equivalent minima, since we can set its maximum value
to 180◦. This naturally prevents double counting states aris-
ing in the two minima. The truncation does not occur natu-
rally using the Cartesian normal mode coordinates, and, with
large enough bounds on those coordinates, we would need to
divide the density of states by two to obtain the correct result.
The possibility of sampling some, but not all, of the states
belonging to the other well may result in systematic error
to the Cartesian sampling above certain threshold energies.
While the truncation of space could also be enforced in the
Cartesian coordinate system, it does not appear as a natural
consequence of the chosen coordinates as in the curvilinear
sampling. An additional advantage is that while the Cartesian
normal modes are associated with a particular minimum, the
curvilinear coordinates are not and so can more easily sample
multiple minima when not identical by symmetry.

To further illustrate the usefulness of curvilinear coordi-
nate sampling, the convergence metrics defined in Sec. III A
are shown in Fig. 4. For this test we employed the fitted vinyl
potential and performed 20 independent runs for both choices
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FIG. 5. Anharmonicity corrections to the (a) density of states and (b) parti-
tion function for the vinyl radical.

of coordinate system from which we then calculated the stan-
dard deviations. Unlike for methane there is a clear efficiency
improvement when using curvilinear coordinates. Here we as-
sume M−0.5 convergence and fit only the prefactor for the two
coordinate choices. Using curvilinear z-matrix coordinates,
a relative error in ρ of 3% is obtained with M = 100 000,
whereas 10× as many sampled geometries are required using
Cartesian normal mode coordinates. This efficiency improve-
ment is attributed in part to the reduced coupling of the CCH′

bend with the other motions, as discussed above.
Next, anharmonic corrections for ρ and Q are calcu-

lated for all nine internal coordinates, M = 2 457 600, and the
composite QCISD(T)/MP2 potential. The results are shown
in Fig. 5. Using our parallelized code, distributed over 768
processors, this constituted approximately 17 h of walltime.
These are compared with a run using the fitted potential and
10 000 000 sampling points. The smaller direct sampling run
shows some additional uncertainty in the low energy region
because we did not choose to weight this region significantly
here. The agreement between the two calculations for ρ is
within 2% at the dissociation threshold and is 1.36.

Direct sampling of the potential involves multiple calls
to an external electronic structure program yielding nu-
merous inefficiencies in terms of overhead and redundant
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computational work. Various schemes to improve the effi-
ciency of such direct sampling approaches have been de-
veloped in the context of both Monte Carlo integration and
molecular dynamics;45–47 however, we have not yet imple-
mented any such approach.

IV. CONCLUSIONS

In this paper we have introduced an algorithm for evaluat-
ing classical phase space integrals using arbitrary curvilinear
or rectilinear coordinate systems via Monte Carlo sampling.
This algorithm was used to calculate vibrational state counts,
state densities, and partition functions for CH4 and C2H3. The
present implementation yields classical values for a range of
energies and for zero total angular momentum. With suitable
modifications it can be used to calculate rovibrational prop-
erties. The calculated values of ρ and Q include the effects
of all anharmonicities in the underlying potential energy sur-
face, including single-mode anharmonicity and anharmonic
coupling. We have demonstrated that this algorithm can be ef-
ficiently used with direct ab initio potential evaluations. The
use of curvilinear coordinates allows for more convenient co-
ordinate choices, which can lead to more accurate results and
faster convergence. This approach may be useful to validate
approximate methods, suitable for application to larger sys-
tems. For example, it can be used to test models for separa-
bility and the optimality of coordinate systems. While these
effects have been considered previously,48, 49 the present ap-
proach can provide tests of these methods.
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